Outpatient Health Care Resources Utilized by Infants in High-Risk Infant Follow-up Programs in California: Initial Results of a Quality Improvement and Research Network.

Missed Opportunities in High-Risk Infant Follow-Up: Referrals to Early Intervention.

Brian G Tang, MD¹, Lynne C Huffman MD¹, Erika Gray, BA¹, Amanda M Yee¹, Susan R Hintz, MD MS¹, Heidi M Feldman, MD PhD¹, Kimie J Kagawa, MD², and Jeffrey B Gould, MD MPH¹

¹ Department of Pediatrics, Stanford University School of Medicine, Stanford, CA

² State of California, Department of Healthcare Services, Systems of Care Division, Children's Medical Services Branch; Program Development Section

STANFORD

SCHOOL OF MEDICINE

Objective

Describe and compare the utilization of health care resources among different birthweight groups of highrisk infants between NICU discharge and HRIF Visit #1.

Distribution by Birthweight

	n (%)
ELBW (<1000g)	1114 (22)
VLBW (1000-1499g)	1670 (33)
LBW (1500-2499g)	1230 (24)
NBW (≥ 2500g)	1115 (22)
Totals	5129

Neonatal-Medical Characteristics by Birthweight

	ELBVV (N=1114)	VLBVV (N=1670)	LBVV (N=1230)	NBW (N=1115)	Totals
Seizures	3% (28)	<1% (7)	3% (23)	17% (192)**	5% (250)
Oxygen >28 days + CLD	22% (250)**	13% (215)	8% (101)	8% (93)	I 3% (659)
Persistently Unstable ^{^^}	13% (142)	11% (188)	13% (154)	17% (187)*	13% (671)
Intracranial Hemorrhage	17% (194)**	6% (99)	6% (69)	5% (52)	8% (414)
Develop. CNS Abnormality	1% (12)	<1% (7)	3% (31)	8% (91)**	3% (141)
HIE	<1%(1)	<1% (4)	I% (9)	10% (110)**	2% (124)

** p ≤ .001 * p < .05

^^ Prolonged hypoxia, acidemia, hypoglycemia, or hypotension

HIE = Hypoxic Ischemic Encephalopathy

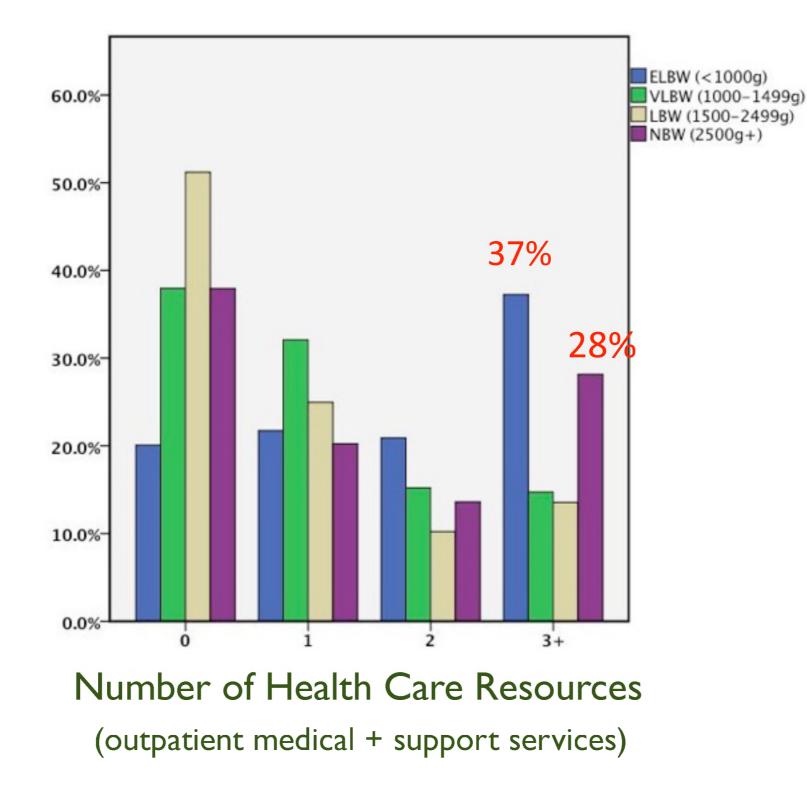
CLD = Chronic Lung Disease

Health Care Resources by Birthweight

	ELBVV (N=1114)	VLBVV (N=1670)	LBVV (N=1230)	NBW (N=1115)	Totals
Utilizing Early Intervention Program	31% (347)**	I 4% (234)	2% (44)	21% (234)	19% (959)
Utilizing Outpatient Support Services [†]	37% (408)**	24% (400)	I 7% (208)	28% (307)	46% (1323)
Utilizing Outpatient Medical Subspecialty	70% (744)**	50% (833)	41% (503)	54% (601)	53% (2711)

100. ≥ q **

Outpatient Medical Subspecialties by Birthweight


	ELBW (N=1114)	VLBVV (N=1670)	LBVV (N=1230)	NBW (N=1115)	Totals
Cardiology	8% (90)	6% (100)	10% (120)	I6% (I74)**	9% (484)
Neurology	5% (60)	3% (46)	6% (70)	24% (269)**	9% (445)
Ophthalmology	54% (606)**	38% (626)	23% (278)	11% (127)	32% (1637)
Pulmonology	22% (247)**	5% (91)	4% (45)	6% (62)	9% (445)

** p ≤ .001

Outpatient Support Services by Birthweight

	ELBVV (N=1114)	VLBVV (N=1670)	LBW (N=1230)	NBW (N=1115)	Totals
ΟΤ	7% (75)	4% (60)	4% (53)	8% (90)	5% (278)
PT	14% (158)	8% (129)	7% (91)	14% (156)	10% (534)
Nursing	11% (121)	9 % (156)	5% (66)	6% (71)	8% (414)

Utilization of Health Care Resources by Birthweight

- A high proportion of high-risk infants are utilizing health care resources within the first year after NICU discharge by the time they are seen at HRIF visit #1.
- The distribution of services utilized within the first year after NICU discharge is reflective of the medical problems expected in this patient population.
- High service utilization in this population has a <u>bimodal</u> pattern with respect to birthweight.
- A high proportion of NBW high-risk infants utilized several health care resources.

Outpatient Health Care Resources Utilized by Infants in High-Risk Infant Follow-up Programs in California: Initial Results of a Quality Improvement and Research Network.

Missed Opportunities in High-Risk Infant Follow-Up: Referrals to Early Intervention.

Brian G Tang, MD¹, Lynne C Huffman MD¹, Erika Gray, BA¹, Amanda M Yee¹, Susan R Hintz, MD MS¹, Heidi M Feldman, MD PhD¹, Kimie J Kagawa, MD², and Jeffrey B Gould, MD MPH¹

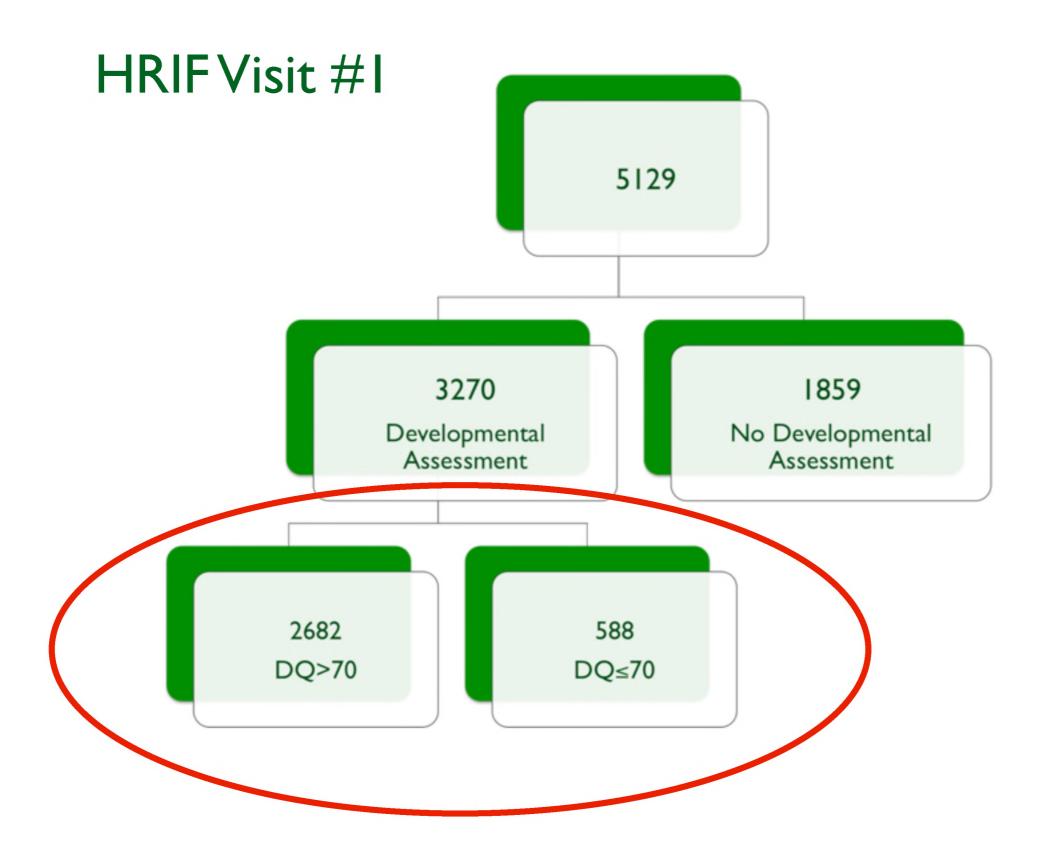
¹ Department of Pediatrics, Stanford University School of Medicine, Stanford, CA

² State of California, Department of Healthcare Services, Systems of Care Division, Children's Medical Services Branch; Program Development Section

STANFORD

SCHOOL OF MEDICINE

Objectives


Assess statewide rates of referrals to El for high-risk infants who demonstrate significant developmental delay following NICU discharge.

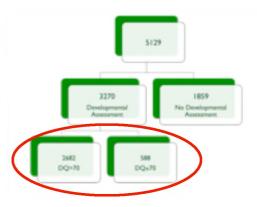
Inclusion Criteria

 Standardized developmental assessment during HRIFVisit #1 (4-8 months of age, adjusted for prematurity)

AND/OR

- Standardized developmental assessment during HRIFVisit #2 (12-16 months of age, adjusted for prematurity).
- Scores represented as a developmental quotient (DQ) with a mean of 100, standard deviation of 15.

Socio-demographic Characteristics



	DQ >70 (N=2680)	DQ ≤70 (N=588)	Totals
Male Gender	56% (1500)	58% (339)	56% (1839)
Maternal Non-White Minority Status	37% (697)	38% (169)	37% (866)
Non-English Speaking Caregiver	26% (641)	38% (202)**	28% (843)
Caregiver Education < High School Degree	20% (353)	29% (103)**	22% (456)
Government Health Insurance	48% (1278)	58% (342)**	50% (1620)

100. ≥ q **

100. ≥ q **

Neonatal Characteristics

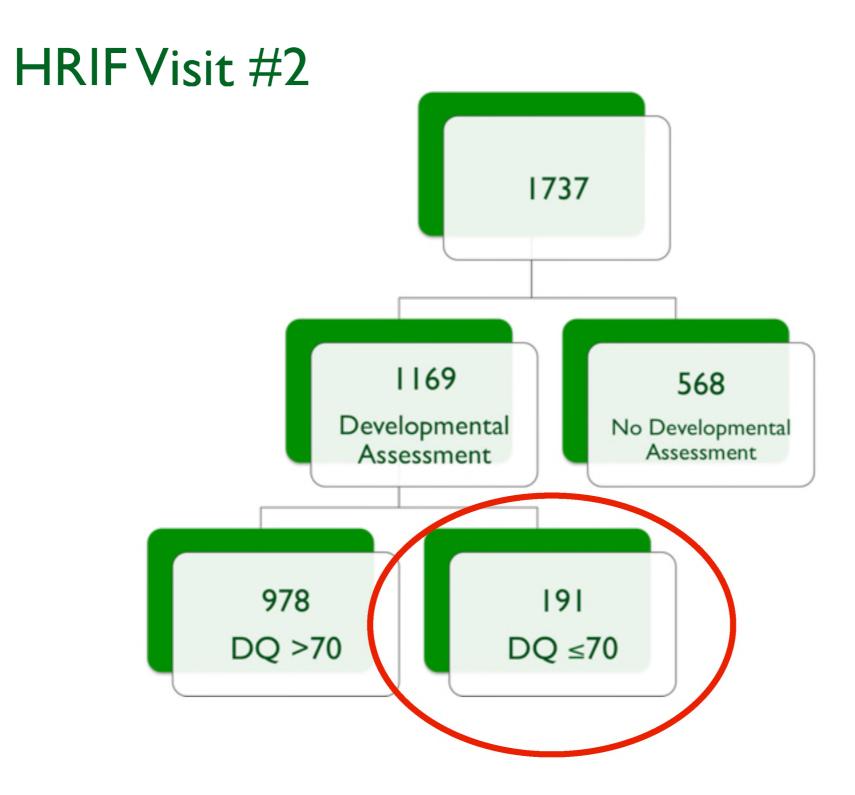
	DQ >70 (N=2682)	DQ ≤70 (N=588)	Totals
Oxygen >28 days and CLD	10% (269)	18% (105)**	11% (374)
Persistently Unstable [†]	I 3% (352)	18% (108)**	I 5% (460)
Seizures	4% (95)	I I% (63)**	5% (158)
Intracranial Hemorrhage	7% (185)	I 2% (73)**	8% (258)
Other Neurologic Abnormality^	22% (585)	30% (177)**	23% (762)

** p ≤ .001

[†] Prolonged hypoxia, acidemia, hypoglycemia, or hypotension

^ e.g. CNS malformation, CNS infection, periventricular leukomalacia, hypoxic ischemic encephalopathy

Birthweight Characteristics


Birthweight	DQ >70 (N=2687)	DQ ≤70 (N=589)	Totals
ELBW (<1000 g)	20% (539)	27% (160)	22% (6 99)
VLBW (1000-1499 g)	34% (904)	22% (3)	32% (1035)
LBW (1500-2499 g)	26% (691)	8% (04)	24% (795)
NBW (≥2500 g)	20% (548)	33% (193)	23% (741)

ELBW = extremely low birth-weight;VLBW = very low birth-weight LBW = low birth-weight; NBW = normal birth-weight

El Status of Children with DQ \leq 70 at HRIFVisit #I

	N=588
	N (%)
El before HRIFVisit #I	187 (32)
No El before HRIFVisit #I	401 (68)
El Referral Made	109 (27)
No El Referral Made	292 (73)

El Status of Children with DQ \leq 70 at HRIFVisit #2

	N=191
	N (%)
El before the HRIFVisit #2	108 (57)
No El before HRIF Visit #2	83 (43)
El Referral Made	18 (22)
No El Referral Made	65 (78)

- A high proportion of infants identified as high-risk in the NICU are not being referred to El even after having a documented developmental delay.
- Reasons for why these infants were not referred are unclear.
- These findings suggest a quality improvement issue and underutilization of El for young children with developmental delays.
- Several socio-demographic and neonatal factors characterize children who have significant developmental delay.

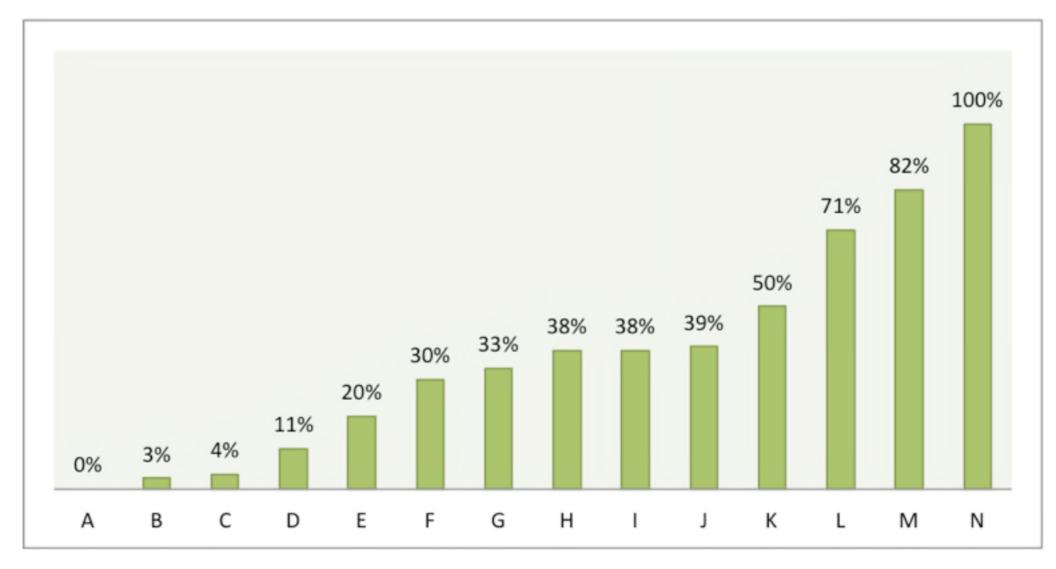
- A high proportion of infants identified as high-risk in the NICU are not being referred to EI even after having a documented developmental delay.
- Reasons for why these infants were not referred are unclear.
- These findings suggest a quality improvement issue and underutilization of El for young children with developmental delays.
- Several socio-demographic and neonatal factors characterize children who have significant developmental delay.

Reasons for why these infants were not referred are unclear.

- Data entry issues.
- HRIF providers are taking too long of a "wait-and-see" approach.
- Parents or primary pediatric providers are referring children themselves.
- Inadequate resources some HRIF programs have to provide care-coordination for infants and their families.
- Parents are rejecting the offer for El referral.
- Infants still had active medical issues.

- A high proportion of infants identified as high-risk in the NICU are not being referred to EI even after having a documented developmental delay.
- Reasons for why these infants were not referred are unclear.
- These findings suggest a quality improvement issue and underutilization of El for young children with developmental delays.
- Several socio-demographic and neonatal factors characterize children who have significant developmental delay.

- A high proportion of infants identified as high-risk in the NICU are not being referred to EI even after having a documented developmental delay.
- Reasons for why these infants were not referred are unclear.
- These findings suggest a quality improvement issue and underutilization of El for young children with developmental delays.
- Several socio-demographic and neonatal factors characterize children who have significant developmental delay.


Thank You

Heidi Feldman, MD PhD Jeff Gould, MD MPH Erika Gray, BA Susan Hintz, MD MSEpi Lynne Huffman, MD

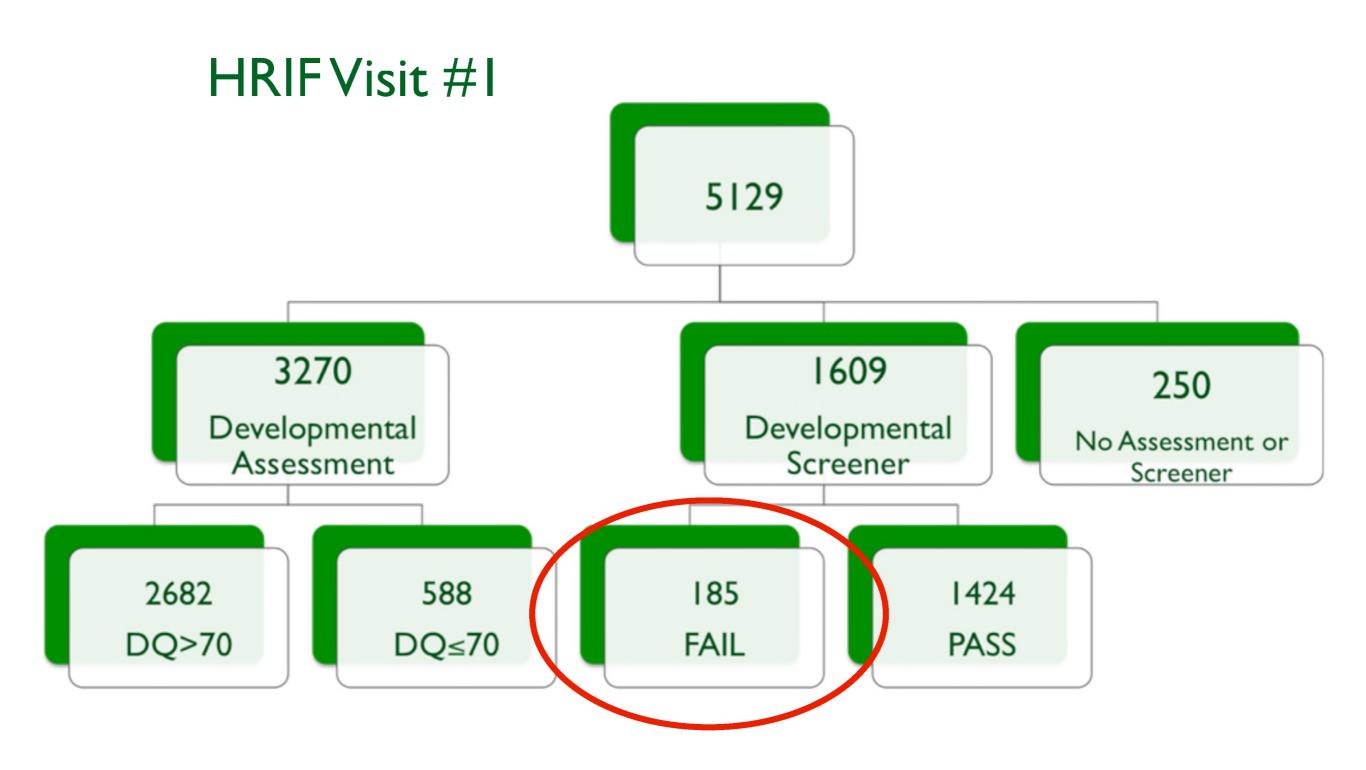
Kimie Kagawa, MD Yuan Lin Mei-Chiung Shih, PhD Susan Weber, PhD Amanda Yee

Special Acknowledgement to CCS and Spectrum Pediatric Research Fund

Percentage of Infants Referred to EI with $DQ \leq 70$ and No Prior EI

Regional HRIF Program

El Status of Children with DQ \leq 70 at HRIFVisit #I


	N=588
	N (%)
El before HRIF visit #I	187 (32)
No El before HRIF visit #I	401 (68)
El Referral Made	109 (27)
No El Referral Made	292 (73)

Referrals to Special Services at HRIF Visit #1⁺

(No El Referral (N=292)	El Referral (N=109)	Totals
No referral to other services*	47% (136)	28% (31)	42% (167)
Referral to other services*	53% (156)	72% (78)	58% (234)

[†]Infants with DQ ≤70 and no prior EI

* e.g. Physical therapy, occupational therapy, social work

El Status of Children with Failed Developmental Screener at HRIF Visit #1

	N=185
	N (%)
El before HRIF visit #I	67 (36)
No El before HRIF visit #I	118 (64)
El Referral Made	37 (31)
No El Referral Made	82 (69)